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T> 2.17°K. It was fitted with an empirical formula, 

(3' (2.2000K) = 0.30X 10-3+ (72.0+6.66P)-1 atm-1 , (3) 

to about 1.5% ; deviations of the measurements are 
given in Fig. 3. Also given there is a comparison with (3 
derived from density data of Keesom and Keesom1 

and of Edeskuty and Sherman.5 Agreement between 
the three sets of results seems reasonable and the com­
parison is valid since no A anomalies exist at this 
temperature. 

A view of Fig. 2 again shows that a compressibility 
curve between 1.80 and 2.05°K parallels the 2.20oK 
curve at low pressures, but with increasing pressure it 
rises above the 2.20oK curve, reaching a peak at P)... 
At P> P).., the values of (3 drop continuously and ap­
proach the 2.20oK value. The minima in the (3-versus-P 
curves increase in depth and breadth as P).. increases, 
but they seem flattest in the middle of the P).. range. 
Although the peaks become more distinct with in­
creased P).., the sharpness of all the peak tips required a 
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FIG. 4. Compressibility of liquid He' at 1.95 and 2.200oK. 

higher than normal resolution; therefore the pressure 
increment of a measurement was reduced from the usual 
0.27 to 0.05 atm in the vicinity of the peak. Portions of 
the 1.95 and 1.80oK curves are shown in Figs. 4 and 5, 
respectively, along with the 2.20oK values for compari­
son. The peak at P).. fades away with increasing tem­
perature until it almost disappears at 2.05°K, although 
the compressibility excess over the 2.20oK value is still 
obvious. 

In the region between 1.60 and 1.75°K, no A transi­
tion occurs. However, the results in Fig. 6 show that a 
minimum in the (3-versus-P curve persists down to 
1.70oK; at 1.75°K, the rate of rise beyond the minimum 
is similar to that at 1.80oK. Below 1.70oK, (the 1.65°K 
curve is omitted for clarity) the minimum disappears, 
but a compressibility excess over the 2.20oK curve re­
mains, amounting to 15% at 1.60oK near the melting 
pressure. 

The temperature variation of (3 at constant pressure 
changed according to the proximity of (T,P) to (T)..,P)..) . 
For all temperatures, (3 at P«P).. increased with in-
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FIG. 5. Compressibility of liquid He' at 1.80 and 2.200oK . 

creasing temperature. Near the A transition, the varia­
tion of (3 with temperature became inverted. The 
reversion of (a(3/ aT)p to the normal plus sign at P»P).. 
was not indicated-the compressibilities for different 
temperatures merged to a common value within ",2% , 
the experimental error, at the highest pressures. 

The accuracy of the measurements is summarized 
here. From a straight sum of possible individual errors 
in cell calibration plus those from readings of ~ V and 
M, the maximum error in an individual (3 should be 
2.5 to 5.0% for high to low values of (3, respectively; 
from the root mean square of individual errors, a 
probable error in (3 is 1.5 to 3.0% for high to low values. 
Consideration of Md~Pu alone in Eq. (2) leads to a 
precision error of 1.0 to 1.7% for high to low values of 
(3. Near the A transition, the decrease in M for greater 
resolution probably lowered the accuracy, but here we 
are mainly interested in the reproducibility of results 
over a short range of pressure and time. Error in these 
results is estimated at 2% . 

IV. DISCUSSION 

The present compressibility measurements provide 
a view of normal and abnormal behavior in liquid He4 
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FIG. 6. Compressibility of liquid He' at several 
temperatures below 1.76 and at 2.200oK. 
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TABLE 1. Compressibility minima in liquid He'. 

T 
(OK) 

2.050 
2.000 
1.949 
1.899 
1.880 
1.865 
1.799 
1.750 
1.739 
1.700 

8.20 
7.42 
6.75 
6.35 
6.27 
6.15 
5.65 
5.35 
5.27 
5.07 

P(fJmin) 
(atm) 

10.3±0.3 
13.7±0.S 
17.0±0.7 
19.0±1.0 
20.0±1.0 
20.5±0.S 
23.0±0.S 
24.5±0.S 
25.0±0.5 
26.0±0.5 

through pressure variations. Generally, (af3/aPh· is 
negative because of the increase in intermolecular 
repulsive force. In this sense, the present results show 
liquid He4 is normal for all pressures at T> 2.17°K. 
In particular, the liquid at 2.200oK seems to have a high 
degree of normalcy, as here f3 versus P closely follows 
Tait's relation 

(4) 

where V is the corrected molar volume of Edeskuty and 
Shermans and 1=3.390 and L=8.47 are empirical 
constants. This relation fits a wide variety of liquids 
and was given a fundamental basis for liquids in general 
by Ginell. 7 

At T<2.17°K, the sign of (af3/ap)T changes as 
P -+ P>. from below. The minimum shown in f3 versus P 
is lacking in the curves of specific heat and thermal ex­
pansion versus temperature, which simply continue the 
trends set by the low-temperature portions of their 
curves, albeit at accelerated rates. The minima in the 
f3-versus-P curves follow a regular pattern for both 
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FIG. 7. Phase diagram of He' showing the melting curve, the 
X line, the locus of zero expansion coefficient, and the locus of 
minimum in compressibility. 

JR. Ginell, J. Chem. Phys. 34, 1249 (1961) . 

f3min and P(f3min). The values given in Table I show 
that f3min decreases linearly with increasing P(f3min). 
In the phase diagram of Fig. 7 are shown the locus of 
f3min and the locus of zero thermal expansion, deter­
mined by Grilly and Mills. 3 These two loci indicate a 
sizable area of anomalous behavior in the P-V-T rela­
tions. Goldstein8 gave a possible explanation for the 
value of (af3/ap)r>o as P increases toward P>.: The 
exchange-energy density, decreasing rapidly as the 
number of normal atoms increases with pressure, 
provides a net decrease in energy density, which is 
measured by 1/ f3. The same mechanism could account 
for the minima shown at T< 1.76°K, where a A transition 
is cut short by the formation of solid. 

ear P>., the variation of f3 with P is best expressed 
by a logarithmic fit 

103(f3T-f32.2)= a_-b-Ioglo IP-P>.1 for P<P>. 
=a+-b+logloIP-PAI for P>PA. (5) 

Here, f3T and f32.2 are the measured compressibilities 
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FIG. 8. {jr-{j2.2 versus loglP-PAI for liquid He' at several 
temperatures. The upper curve is for P<PA and the lower curve 
is for P>PA at each T. 

at (T,P) and at (2.200oK, P), respectively, and P is 
in atmospheres. The constants a, b, and P>. were 
determined from plots of f3T-f32.2 versus 10gIP-PAI. 
Some graphical examples are given in Fig. 8, while the 
constants are given in Table II. We see that the linear 
plots become more definite as the temperature is de­
creased, or as the A transition of f3 is accented. At the 
lowest observed T>. values, 1.86 and 1.80oK, Eq. (5) 
appears to hold for 5X1o--2< IP-P>.I <10 atm. This 
resembles the linear functions of log I T - TAl fitted to 
the thermal expansion, ap=(1/V)(aV/aT)p,H2 and 
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